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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain
cubic feet 0.02831685 cubic metres
cubic yards 0.7645549 cubic metres
degrees (angle) 0.01745329 radians
feet 0.3048 metres
square feet 0.09290304 square metres



USER'S GUIDE FOR MODELS OF DREDGED MATERIAL DISPOSAL
IN OPEN WATER

PART I: INTRODUCTION

Background

Origin

1. 'Three models for computing the fate of dredged material are dis-
cussed. The instantaneous dump model DIFID (Disposal From an Instantaneous
Dump) and the continuous discharge model DIFCD (Disposal From a Continuous
Discharge) were developed by Brandsma and Divoky (1976) for the US Army Engi-
neer Waterways Experiment Station (WES) under the Dredged Material Research
Program (DMRP)., Much of the basis for these two models was provided by
earlier model development by Koh and Chang (1973) for the barged disposal of
wastes in the ocean. That work was conducted under funding by the US Environ-
mental Protection Agency (EPA) in Corvallis, OR., The third model is the
hopper dredge model DIFHD (Disposal From a Hopper Dredge), which treats dis-
posal from a hopper dredge containing several bins. This model is a combina-
tion of the instantaneous dump and the continuous discharge models and was
constructed in the Hydraulics Laboratory at WES. These three models, as
described in this report, are included in the ADDAMS (Automated Dredging and
Disposal Alternatives Management System) program with an interactive routine
for data entry (Hayes et al., in preparation).
Purpose

2, Annually, millions of tons of dredged material from streams, estu-
aries, and coastal waters are disposed in the aquatic environment. The dis-
posal site environment, the composition of the disposed material, and the
method of disposal are the major factors in the determination of the short-
term location and concentration of dredged material. Mathematical models of
the physical processes determining the fate of the disposed material can be
used to provide an estimate of concentrations in the receiving water as well
as the initial deposition pattern of material on the bottom. Estimates of
water column concentrations are often needed to determine mixing zones. The

initial deposition pattern of material on the bottom is required in long-term



sediment transport studies which assess the potential for erosion, transport,
and subsequent redeposition of the material. Such models can also serve as a

valuable aid in field monitoring programs.
Limitations

3. These models simulate movement of the disposed material as it falls
through the water column, spreads over the bottom, and finally is transported
and diffused as suspended sediment by the ambient current. DIFID is designed
to simulate the movement of material from an instantaneous dump which falls as
a hemispherical cloud. Thus, the total time required for the material to
leave the disposal vessel should not be greater than the time required for the
material to reach the bottom. DIFCD is designed to compute the movement of
material disposed in a continuous fashion at a constant discharge rate. Thus,
it can be applied to pipeline disposal operations in which the discharge jet
is below the water surface or perhaps to the discharge of material from a
single bin of a hopper dredge. If the initial direction of disposal is verti-
cal, either the disposal source must be moving or the ambient current must be
strong enough to result in a bending of the jet before the bottom is encoun-
tered. DIFHD has been comstructed to simulate the fate of material disposed
from stationary hopper dredges. Here, the normal mode of disposal is to open
first one palr of doors, then another, until the complete disposal is made,
which normally takes on the order of a few minutes to complete. DIFHD should
not be applied to disposal operations that differ significantly from that
described.

4. All three models require that the dredged material be broken into
various solid fractions with a settling velocity specified for each ffaction.
In many cases, a significant portion of the material falls as "clumps." This
is especially true if the dredging is done by clamshell and can be true in the
case of hydraulically dredged material if consolidation takes place in the
hopper during transit to the disposal site or if consolidated clays are
dredged. The specification of a clump fraction is rather subjective. There-
fore, the inability to characterize the disposed material accurately in some
disposal operations prevents a quantitative interpretation of model results in
those operations. In addition, it should be noted that the disposed material
is expected to behave as a dense liquid. This will be true only if the



material is composed of primarily fine-grained solids. Thus, the models
should not be applied to the disposal of purely sandy material.

5. As noted, a settling velocity must be prescribed for each solid
fraction. A basic assumption is that unless the fraction is specified as
being cohesive, in which case the settling velocity is computed as a function
of concentration, the settling is considered to occur at a constant rate.

6. When the models are applied, computations are referenced to a hori-
zontal grid with a square spacing, and a variable water depth over the grid is
allowed. However, the collapse of the dredged material cloud on the bottom
does not consider the variable depth, although an average bottom slope at the
impact point can be specified as input data. Even though the effect of a bot-
tom slope has been incorporated, a basic limitation still exists in that the
bottom can slope in only one direction over the collapsed region; i.e., bottom
collapse on a "mound" where the collapsing cloud runs down the sides is not
treated. For controlled disposal operations in which material is disposed
into bottom depressions, both DIFID and DIFHD have been modified to allow for
the collapse of the bottom cloud in a rectangular hole.

7. A major limitation of these models is the basic assumption that once
solid particles are deposited on the bottom, they remain there. Therefore,
the models should be applied only over time frames in which erosion of the
newly deposited material is insignificant,

8. The passive transport and diffusion phase in all three models is
handled by allowing material settling from the descent and collapse phases to
be stored in small Gaussian clouds. These clouds are then diffused and trans-
ported at the end of each time-step. Computations on the long-term grid are

made only at those times when output is desired.

Previous Applications

9. Most of the applications of the disposal models to date have been of
a generic nature; 1.e., default values of model coefficients have been used.
Such applications have been made at disposal sites near the Hawaiian Islands

(Johnson and Holliday 1977), San Diego Harbor*, San Francisco Bay (Trawle and

* B. H. Johnson. 1979 (Nov). "Application of the Instantaneous Dump Dredgec.
Material Disposal Model to the Disposal of San Diego Harbor Material at the
45- and 100-Fathom Disposal Sites," In-house Report, US Army Engineer
Waterways Experiment Station, Vicksburg, MS,.



Johnson 1986a), Puget Sound (Trawle and Johnson 1986b; Adamec et al. 1987),
and Long Island Sound.* Verification efforts by Johnson and Holliday (1978)
using data collected by Bokuniewicz et al. (1978) were conducted for disposal
operations at the Duwamish disposal site in Elliott Bay near Seattle, WA, in
the New York Bight, and in Lake Ontario. However, the data available were
limited, and the disposal operations in Lake Ontario and the New York Bight
did not fit the idealized operations assumed in the models. [In addition, re-
cent modifications made in the bottom collapse phase to better represent the
dynamics of a radially expanding bottom surge will likely require different
values of the collapse phase coefficients than those determined in the 1978
study.

10. In connection with the recent modeling of dredged material disposed
in Puget Sound (Adamec et al. 1987), the latest version of DIFID has been ap-
plied using the data collected by Bokuniewicz et al. (1978) at the Duwamish

disposal site. Results from this effort are presented in Part II.

* B, H, Johnson., 1978 (Sep). "Application of the Instantaneous Dump Dredged
Material Disposal Model to the Disposal of Stamford and New Haven Harbor
Material from a Scow in the Long Island Sound," In-house Report, US Army
Engineer Waterways Experiment Station, Vicksburg, MS.



PART II: MODEL DESIGN

Theoretical Basis

11. In all three models the behavior of the material is assumed to be
separated into three phases: convective descent, during which the disposal
cloud or discharge jet falls under the influence of gravity; dynamic collapse,
occurring when the descending cloud or jet either impacts the bottom or
arrives at a level of neutral buoyancy where descent is retarded and horizon~
tal spreading dominates; and passive transport-dispersion, commencing when the
material transport and spreading are determined more by ambient currents and
turbulence than by the dynamics of the disposal operation. Figures 1, 2, and
3 illustrate these phases for DIFID, DIFCD, and DIFHD, respectively.

Convective descent

12, In DIFID, a single cloud that maintains a hemispherical shape dur-
ing convective descent is assumed to be released. Since the solids concentra-
tion in discharged dredged material is usually low, the cloud is expected to

behave as a dense 1liquid; thus, a basic assumption is that a buoyant thermal
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dump of dredged material (from Brandsma and Divoky 1976)
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analysis is appropriate. The equations governing the motion are those for
conservation of mass, momentum, buoyancy, solid particles, and vorticity.
These equations are straightforward statements of conservation principles and
will not be presented here. Details are presented in Koh and Chang (1973)

and Brandsma and Divoky (1976). It should be noted that the entrainment coef-
ficient associated with the entrainment of ambient fluid into the descending
hemispherical cloud is assumed to vary smoothly between its value for a vortex
ring and the value for turbulent thermals. Model results are quite sensitive
to the entrainment coefficient, which in turn is dependent upon the material
being disposed (the higher the moisture content, the larger the value of the
entrainment coefficient). Laboratory studies by Bowers and Goldenblatt (1978)
have resulted in analytical expressions for the entrainment, drag, and added
mass coefficients as functions of the moisture content. These have been
incorporated into DIFID.

13. 1In both DIFCD and DIFHD, the flow phenomenon near the discharge
opening, e.g., a pipeline or the bottom doors of a hopper dredge bin, is that
of a sinking momentum jet, Basic assumptions in the formulation of the con-
servation equations for the jet convection phase are that the jet cross sec-
tion remains circular and that velocity, density, and material concentration
distributions may be approximated by "top hat" profiles. Entrainment is as-
sumed to be composed of a combination of momentum jet entrainment and entrain-
ment experienced by a two-dimensional (2-D) thermal. Again, details concern~
ing the governing equations and their solutions are given by Koh and Chang
(1973) and by Brandsma and Divoky (1976).

Dynamic collapse

14, Whether by disposal as an instantaneous dump from a barge or scow,
continuous discharge from a pipeline or moving vessel, or semicontinuous dis-~
charge from an essentially stationary hopper dredge, the disposed material
cloud or jet grows during convective descent as a result of entrainment,
Eventually, either the material reaches the bottom, or the density difference
between the discharged material and the ambient water column becomes small
enough for a position of neutral buoyancy to be assumed. In either case, the
vertical motion i1s arrested and a dynamic spreading in the horizontal occurs.

15. In both the instantaneous dump model, DIFID, and the semicontinuous
hopper dredge model, DIFHD, the basic shape assumed for the collapsing cloud

is an oblate spheroid if collapse occurs in the water column and a general

10



ellipsoid for collapse on a sloping bottom. With the exception of vorticity,
which is assumed to have been dissipated by the stratified ambient water
column, the same conservation equations used in convective descent but now
written for either an oblate spheroid or an ellipsoid are applicable. For the
case of collapse on the bottom, a frictional force between the bottom and the
collapsing cloud is included which accounts for energy dissipation as a result
of the radial spreading as well as movement of the cloud centroid.

16. One major difference exists between the bottom collapse phases of
DIFID and DIFHD. 1In DIFID the complete disposal strikes the bottom as a hemi-
spherical cloud, whereas DIFHD models a semicontinuous disposal operation. In
a hopper dredge disposal operation, one or more doors are opened together with
remaining doors opened as the previous bins become empty. DIFHD handles such
a disposal operation by treating the initial disposal as a continuous jet dis-
charge. When the jet strikes the bottom, the collapse phase is handled by the
collapse of an ellipsoid but with a continuous injection of material possess~
ing the density and solid fraction concentrations computed at the end of the
jet convection phase. If several bins discharge simultaneously, the initial
size of the cloud in collapse is adjusted by a representative distance, e.g.,
half the distance between bin doors.

17. As the jet plume of a continuous jet discharge that does not strike
the bottom moves far downstream from the discharge point, its velocity ap-
proaches that of the ambient fluid, and its behavior is more like a 2-D ther-
mal than a jet. The cross section of the 2-D thermal is assumed to have the
shape of an ellipse. As in DIFID and DIFHD, the governing equations in DIFCD
represent the conservation of mass, momentum, buoyancy, and solid particles,
with a friction force included if the bottom is encountered.

Transport-dif fusion

18. The passive transport-dispersion phase is treated the same in all
three models. When the rate of spreading in the dynamic collapse phase
becomes less than an estimated rate of spreading due to turbulent diffusion in
both the horizontal and vertical directions, the collapse phase is terminated.
During collapse, solid particles can settle as a result of their fall veloc-
ity. As these particles leave the main body of material, they are stored in
small clouds that are characterized by a Gaussian concentration and position

in the water column, i.e.,

11



m 1
C = exp | - = + + ¢))
3/2 2 2 2
(2m) Uxoycz Oy oy o,

where

total mass of cloud, ft3

m

O_,7 _,0 = standard deviations
Xy’ z

Xs,y¥s2 = spatial coordinates

X sY 22, = coordinates of cloud centroid

At the end of each time-step, each cloud is advected horizontally by the input
velocity field. The new position of the cloud centroid is determined by

"
]

o xo‘ + u At
new old

(2)

z =z + w <At
new old

where

u,w

At

local ambient velocities, fps

long-term time-step, sec
19. 1In addition to the advection or transport of the cloud, the cloud
grows both horizontally and vertically as a result of turbulent diffusion.

The horizontal diffusion is based upon the commonly assumed four-thirds power

law. Therefore, the diffusion coefficient is given as

4/3
Ky, © Mk 9
new

where AL is an input dissipation parameter and L 1is set equal to four
standard deviations. The expression for the horizontal growth of a cloud then

becomes

3/2
At
o, =0 1+44/3§——2’/“3 (4)
’“new *“o01d o
X,Z
old
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20. Vertical growth is similarly achieved by employing the Fickian

expression
1/2
o_= (2K t 5
v ( y) (5)
where
Ky = vertical diffusion coefficient
t = time since formation of the cloud
From Equation 5,
do
y _ -1/2
ac Ky(ZKyt) (6)
and thus,
K
o, =o, 4 L At (7)
new old Yo1d

where Ky is a function of the stratification of the water column. The maxi-
mum value of Ky is input as a model coefficient and occurs when the water
density is uniform.

21. 1If long-term output is desired at the end of a particular time-
step, the concentration of each solid type is given at each grid point by
summing the contributions from individual clouds to yield

2
N - (x - x0 )
_ -3/2 1 1 1
Cp = (2M) g;; o oo °XP 2 2
X391 %4 °xi
(8)
N o4 s o4
2 2
[9) o
Yi 2y

13



where N 1is the number of small clouds of a particular solid type and y
(the vertical position at which output is desired) is specified through input
data. This approach for the transport-diffusion phase follows the work of
Brandsma and Sauer (1983). The surface and all solid boundaries are handled
by assuming reflection from the boundaries.

22, 1In addition to the horizontal advection and diffusion of material,
settling of the suspended solids also occurs., Therefore, at each net point
the amount of solid material deposited on the bottom and a corresponding
thickness are also determined. A basic assumption in the models is that once
material is deposited on the bottom, it remains there; i.e., neither erosion
nor bed-load movement of material is allowed. This is the primary theoretical
limitation of the models that restricts their usefulness to the study of the

short-term fate of discharged material.

Model Capabilities

23, These computer programs enable the computation of the physical fate
of dredged material disposed in open water. The following discussion de-
scribes particular capabilities or special features of the codes. Unless a
particular model is noted, the discussion is applicable to all three.
Disposal methods

24, DIFID models an instantaneous dump., If all the material leaves the
disposal source within a few seconds, the assumption of an instantaneous dump
is adequate. DIFCD models a continuous discharge. Pipeline disposal opera-
tions or perhaps hopper dredge disposal from a single bin where either the
speed of the vessel or the ambient current is strong enough to result in se-
vere bending of the convective descent jet can be modeled with DIFCD. If dis-
posal is from a stationary semicontinuous source, DIFHD should be applied.
With this model, the continuous nature of the discharge is allowed while the
bottom collapse features of DIFID are retained that give the radial spread on
the bottom observed by Bokuniewicz et al. (1978).

Ambient environment

25, A wide range of ambient conditions are allowed in model computa-
tions. Conditions rénging from those found in relatively shallow and well-
mixed bays and estuariles to stratified two-layer flow fields, found in estu-

aries where salt wedges are formed, can be handled. Bottom topography can be

14



entered as a constant value or can be varied from one grid cell to the next.
As illustrated in Figure 4, two options of ambient current may be selected,
with the simplest case being the time~invariant profiles shown in Figure 4a
for a constant-depth disposal site. The ambient density profile is entered as

a function of water depth at the deepest point in the disposal site.
Time-varying fall velocities

26. If a solid fraction is specified as being cohesive, the settling
velocity is computed as a function of the suspended sediment concentration of

that solid type. The following algorithm is used:

0.0017 4if C < 25 mg/%

v = 2.3 x 107 c*3 4f 25 <c < 300 mg/2 (9)
= 0.047 4if C > 300 mg/2
Y.
N Wi
pul wwi | §0
bu2 uul lowz
WW2
’_ U

T

a. SIMPLE ORTHOGONAL VELOCITY PROFILES FOR CONSTANT
DEPTH. APPLIED EVERYWHERE IN FIELD.

<

v h W

b. VERTICALLY AVERAGED VELOCITY PROFILES FOR VARIABLE

DEPTHS WITH EQUIVALENT LOGARITHMIC PROFILES
SUPERIMPOSED.

Figure 4. Various velocity profiles available for use in models
(from Brandsma and Divoky 1976). Symbols are defined in
Appendix D

15



where

\
s

c

settling velocity, fps

suspended sediment concentration, mg/g
This approach ig taken from Ariathurai, MacArthur, and Krone (1977).

Conservative constituent computations

27. The models allow for the dredged material to contain a conservative
constituent with perhaps a nonzero background concentration of that constitu-
ent. Computing the resultant time-history of that concentration provides in-
formation on the dilution that can be expected over a period of time at the
disposal site.

Output available

28. Through input data the user specifies the amount of output desired.
Much of the input data required, e.g., the water depth field, are immediately
printed after being read. At the end of the convective descent phase in
DIFID, the location of the cloud centroid, the velocity of the cloud centroid,
the radius of the hemispherical cloud, the density difference between the
cloud and the ambient water, the conservative constituent concentration, and
the total volume and concentration of each solid fraction are provided as
functions of time since release of the material. Likewise, the location of
the leading edge of the momentum jet, the center-line velocity of the jet, the
radius of the jet, the density difference between material in the jet and the
ambient water, the conservative constituent concentration, and the flux and
concentration of each solid fraction are provided as functions of time at the
end of the jet convection phase in DIFCD and DIFHD.

29. At the conclusion of the collapse phase in DIFID and DIFHD, time-
dependent information concerning the size of the collapsing cloud, its
density, and its centroid location and velocity as well as conservative con-
stituent and solids concentrations can be requested. Similar information is
provided by DIFCD at the conclusion of the jet collapse phase. It might be
noted that these models attempt to perform the numerical integrations of the
governing conservation equations in the descent and collapse phases with a
minimum of user input. Various control parameters that give the user insight
into the behavior of these computations are printed before the output dis-
cussed the preceding paragraph is provided. These are discussed in more
detail in Appendices A, B, and C, where example applications of DIFID, DIFCD,
and DIFHD, respectively, are presented.
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30. At various times, as requested through input data, output concern-
ing suspended sediment concentrations and solids deposited on the bottom can
be obtained from the transport-diffusion computations. With the Gaussian
cloud transport-diffusion scheme, only concentrations at the water depths re-
quested are provided at each grid point. The volume of each sediment fraction
that has been deposited in each grid cell is also provided. At the conclusion
of the simulation, a void ratio specified through input data is used to com-
pute the thickness of the deposited material from the following expression:

1 + AVR
TH = —AR_EK_ x VOL (10)

where
TH = average depth of material deposited in the grid cell, ft
AVR = aggregate voild ratio
AREA = grid cell area, ft2
VOL = solids volume, ft3

Program Organization and Size

31. All three models consist of approximately 3,000 lines of FORTRAN
coding. Currently, the models are being run on both a CYBER computer and a
personal computer, but no particular problems should occur in trénsferring the
codes to other computer systems. Memory requirements will, of course, be
dependent upon the size of the DIMENSION statements required for a particular
simulation. Typical computation times are a few seconds per transport-
diffusion time-step on a mainframe computer and a few minutes per time-step on
a personal computer.

DIFID

32. DIFID is composed of a main program and 17 subroutines. The func-
tion of each is briefly discussed as follows:
a. AMBC: reads ambient data.

b. DUMP: controls computations for the convective descent phase.

¢. DERIVD: computes the derivatives in the governing equations
for the descent phase.
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COLAPS: controls computations for the collapse of the cloud in
the water column,

e, DERIVC: computes the derivatives in the governing equations
for collapse in the water column.

f. BOTTOM: controls computations for the collapse of the cloud on
the bottom,

g. DERIVB: computes derivatives in the governing equations for
bottom collapse.

h. UW: reads time-varying velocities from TAPE7.

i. VEL: interpolates velocity input to provide horizontal com-

ponents at a particular spatial location.

o

RUNGS: solves ordinary time-dependent differential equations
using a fourth-order Runge-Kutta scheme.

k. BOOKS: transfers material from the descent and collapse phases
into small clouds.

. ACAD: wupdates the transport and diffusion of small clouds.
m. MAD: controls transport-diffusion computatioms.

n. PRINTC: controls printing of results from the transport-
diffusion computations.

o. TRNSPT: computes the location one time-step ago of a particle
occupying a grid point at the current time.

p. DINT: interpolates the water depth field to provide the water
depth at a particular horizontal position,

q. VDIFCO: computes the vertical diffusion coefficient as a func-
tion of the stratification of the water column.

DIFCD

33, DIFCD is composed of a main program and 19 subroutines, many of
which perform the same function as listed in the previous paragraph. However,
there are differences in coding because all long-term computations are per-
formed on each solid fraction separately in DIFID, whereas similar computa-
tions are performed simultaneously in DIFCD. The following subroutines are
contained in DIFCD:

a. ESTGEO: reads geometry data and creates arrays to define water
or land points.

b. INIT: reads much of the input data and initializes variables.
c. AMBC: determines new density profile at the discharge source.
d. JET: controls computations for the jet convection phase.

2. DERIVJ: computes derivatives in the governing equations for

jet convection.
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DIFHD

COLAPS: controls computations for collapse in the water
column,

DERIVC: computes derivatives in the governing equations for
collapse in the water column.

BOTTOM: controls computations for collapse on the bottom.

DERIVB: computes derivatives in the governing equations for
bottom collapse.

UW: reads time-varying velocities from TAPE7.

VEL: interpolates velocity input to provide horizontal com~
ponents at a particular spatial location.

RUNGSJ: solves ordinary space-dependent differential equations
using a fourth-order Runge-Kutta scheme.

BOOKS: transfers material from jet convection and collapse
into small clouds.

ACAD: wupdates the transport and diffusion of small clouds.
MAD: controls transport-diffusion computations.

TRNSPT: computes the location from which a particle occupying
a grid point at the current time came,

PRINTC: controls printing of results from the transport-
diffusion computations.

DINT: interpolates the water depth field to provide the water
depth at a particular horizontal position.

VDIFCO: computes the vertical diffusion coefficient as a func-
tion of the stratification of the water column.

34, DIFHD is composed of the jet convection portion of DIFCD and the

collapse and transport-diffusion portions of DIFID. Of course, additional

coding has been added throughout to handle the semicontinuous nature of a

hopper dredge disposal that strikes the bottom vertically with a subsequent

radial spreading of the material on the bottom. The 18 subroutines composing
DIFHD are listed as follows:

ESTGEO
INIT
JET
DERIVJ

COLAPS
BOTTOM
DERIVC
oW

VEL

RUNGSJ

Same as in DIFCD

Same as in DIFID

Same as in DIFCD
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RUNGS
BOOKS
ACAD
MAD

TRNSPT Same as in DIFID
PRINTC
DINT

VDIFCO

Assembly of Input Data

35. Depending upon the complexity of ambient conditions at the disposal
site, the preparation of input data can range from requiring the application
of a vertically averaged hydrodynamic model to provide velocity fields to an
entire input data setup of perhaps 20-25 cards as illustrated in the examples
presented in Appendices A, B, and C, Input data can be grouped into (a) a de-
scription of the ambient environment at the disposal site, (b) characteriza-
tion of the dredged material, (c) data describing the disposal operation, and
(d) model coefficients. Each is discussed in the following paragraphs. Ap-
pendices D, E, and F provide formatted listings of the input data requirements
of DIFID, DIFCD, and DIFHD, respectively.

Disposal site data

36. The first task in applying the models is constructing a horizontal
grid over the disposal site. The number of grid points should be kept as
small as possible but large enough to extend the grid beyond the area of in-
terest at the level of spatial detail desired. In water depths ranging from
perhaps 50 to 200 ft,* a spatial step of 100-300 ft will probably suffice.
With water currents of perhaps 1-3 fps, a 20 x 20 grid should be sufficient to
result in the majority of the material being deposited on the grid. Quite
often the user may wish to change the horizontal grid after a few preliminary
runs. Water depths and the horizontal components of the ambient current must
be known at each net point. Either of the options of velocity input illus-
trated in Figure 4 may be selected with the simplest case being velocities at
a constant-depth disposal site. The ambient density profile at the deepest
point in the disposal site must also be input and is assumed to be the same at

each net point of the grid.

* A table of factors for converting non-SI units of measurement to
SI (metric) units is found on page 3.
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Characterization of dredged material

37. The dredged material is composed of solid fractions, a fluid com-
ponent, and perhaps a conservative chemical constituent, For each solid
fraction, its concentration by volume, specific gravity, fall velocity, void
ratio after deposit on the bottom, and an indicator as to whether or not the
fraction is cohesive must be entered. Proper material characterization is
extremely important in obtaining realistic predictions from the models. To
trace a conservative chemical constituent, its initial concentration and a
background concentration must be given. 1In addition, the bulk density and
aggregate vold ratio of the dredged material after deposit on the bottom must
be prescribed. If known, its moisture content, which is given as a multiple
of the liquid limit of the particular type of material being disposed, can be
entered to be used in expressions for coefficients developed by Bowers and
Goldenblatt (1978).

Disposal operations data

38. For DIFID, information required includes the position of the barge
or scow on the horizontal grid, the vessel dimensions, the velocity of the
vessel, the unloaded draft of the disposal vessel, and the volume of material
to be disposed. For DIFCD, the following data are required: the initial
position of the discharge on the horizontal grid, the course and speed of the
discharge source, the orientation and depth below the water surface of the
discharge, the radius and flow rate of the discharge, and the total discharge
time. Input data required by DIFHD to describe the disposal operation are
similar to those for DIFCD with the addition of the number of bins opened at
the same time as well as a representative length to increase the initial
radius of the collapsing cloud on the bottom if two or more bins are opened
simultaneously. For example, as illustrated in Figure 3, if pairs of bins are
opened together, a good estimate of the initial radius of the collapsing cloud
would be the computed radius of the jet formed from one bin plus one-half the
distance between the two sets of doors.

Model coefficients

39, There are 13 coefficients in DIFID, 15 in DIFCD, and 14 in DIFHD
that require input values if the user does not wish to use default values. In
DIFID, ALPHA¢ is the entrainment coefficient for a turbulent thermal deter-
.mined experimentally by Koh and Chang (1973). ALPHAC is the coefficient for
entrainment due to cloud collapse given by Koh and Chang (1973). BETA is the
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settling coefficient given by Koh and Chang (1973). The default value is ex-
pected to be good for low solids concentrations. GAMA is a coefficient intro-
duced by Koh and Chang (1973) to simulate the effect of density gradient dif-
ferences on cloud collapse. The default value is based on an educated guess
by Koh and Chang (1973). CD is the drag coefficient for a sphere in the range
of Reynolds numbers expected. CD3 is the drag coefficient for a spheroidal
wedge in the range of Reynolds numbers expected. Similarly, CD4 is the drag
coefficient for a circular plate normal to the flow. CM is the apparent mass
coefficient. The default values for the remaining coefficients CDRAG, CFRIC,
and FRICTN were presented by Koh and Chang (1973) based on educated guess.
CDRAG is the drag coefficient for an elliptic cylinder edge-on to the flow.
CFRIC is a skin friction coefficient and FRICIN is a bottom friction coeffi-
cient. ALAMDA is a dissipation parameter used in the four-thirds law for hor-
izontal diffusion. Based upon results presented by Brandsma and Divoky
(1976), its value ranges from 0,005 to 0.00015 ft2/3/sec, with the higher
values more appropriate for estuarine environments. AKY(Q is the vertical dif-

fusion coefficient in a well-mixed water body. Kent and Pritchard (1959) gave

-3 U2 (H - 2)2

AKY® = 8.6 x 10 ~ ————"t (11)
3
H
where
U = mean horizontal velocity
z = depth of the point of interest
H = bottom depth.

For a depth of 50 ft and a mean velocity of 2.0 fps, a value of 0.05 is deter-
mined at middepth.

40. 1In DIFCD, ALPHAl is the entrainment coefficient for a momentum jet.
ALPHA2 is the entrainment coefficient for a 2-D thermal, ALPHA3 is the
entrainment coefficient for a convecting thermal. The default values for
ALPHAl, ALPHA2, and ALPHA3 were based upon work by Abraham (1970). ALPHA4 is
a coefficient suggested by Koh and Chang (1973) for entrainment due to col-
lapse. BETA and GAMA are as discussed in the previous paragraph. CD is the
drag coefficient for a 2-D cylinder in crossflow in the range of Reynolds num-
bers expected. CD3 is the drag coefficient for a 2-D wedge. CD4 is the drag
coefficient for a 2-D plate normal to the flow. CM, CDRAG, CFRIC, FRICTN,
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ALAMDA, and AKY# are coefficients that are the same as discussed in the pre-
ceding paragraph. Coefficients required in DIFHD are composed of coefficients
from DIFCD and DIFID.

41. Default values of these coefficients are contained in the computer
codes, and their values are listed in the input data lists presented in
Appendices D, E, and F. However, as noted, the user may specify other values.
Computer experimentation such as that presented by Johnson and Holliday (1978)
has shown that model results appear to be fairly insensitive to many of the
coefficients. The most important coefficients in the instantaneous dump model
DIFID appear to be ALPHA@, CD, CDRAG, FRICTN, and AKY@#. Each is briefly
described in Appendix D. The most important coefficients in the continuous
discharge model DIFCD appear to be ALPHAl, CD, CDRAG, FRICIN, and AKY@#. Each
is briefly described in Appendix E. The most important coefficients in DIFHD
are those from the jet convection phase of DIFCD, i.e., ALPHAl and CD and
those from the collapse and transport-diffusion phases of DIFID, i.e., CDRAG,
FRICTN, and AKY(.

42, 1If the user has no data to calibrate the models, it is suggested
that the calibration efforts presented by Johnson and Holliday (1978) and
Adamec et al. (1987) be studied. Figures 5 and 6 illustrate that a signifi-
cant difference results in the computed bottom spread from a hopper dredge
disposal operation in Lake Ontario depending upon the values of coefficients
specified. It should be remembered that the results presented are from ear-
lier versions of the models; thus, particular values of the coefficients
listed may no longer be applicable. Figure 7 presents results from the more
recent calibration effort at the Duwamish site using the following variables:

a. tp = Recorded time required for bottom encounter.
b. t

- c
c. VR = Recorded velocity of bottom surge at 150 ft downstream of

Computed time required for bottom encounter.

the dump point,

d. Vc = Computed velocity of leading edge of bottom collapsing
cloud at 150 ft downstream of the dump point.

e. CR = Recorded concentration of suspended sediment at 3 ft off
the bottom at 300 ft downstream of the dump point.

f. Cc = Computed concentration of suspended sediment 3 ft off the
bottom at 300 ft downstream of the dump point.

It is suggested that a sensitivity analysis involving the more important
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Figure 5. Surge spread versus time after disposal at the Lake Ontario
58-ft site (taken from Johnson and Holliday 1978)

coefficients be conducted for each new application of the models. Experi-
mental work conducted by Bowers and Goldenblatt (1978) has been incorporated
into DIFID in which the descent entrainment and drag coefficients as well as

the added mass coefficient are related to the moisture content of the disposed
material,
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VOL = 500 yd3

P = 1.50 g/cm3
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SAND = 14%
COEFFICIENTS
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Figure 7. Results from recent calibration of DIFID at the Duwamish disposal
site (from Johnson, Trawle, and Adamec, in preparation)
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PART III: SUMMARY

43, Three computer models for predicting the short-term physical fate
of dredged material disposed in open water have been presented. DIFID should
be applied when the disposal operation is essentially instantaneous, whereas
DIFCD is applicable to continuous disposal operations, e.g., pipeline dis-
posal. DIFHD has been developed for application to dredged material disposal
from a staticnary hopper dredge in which two or more bins discharge material
simultaneously. Theoretical aspects along with uses and limitations of the
models have bteen discussed. Example applications of the models at a constant-
depth site presented in Appendices A, B, and C serve to illustrate that very
little input data are required for such applications. An inspection of the
example data setups along with the formatted list of input cards presented in
Appendices D, E, and F for DIFID, DIFCD, and DIFHD, respectively, should make
application of the models relatively straightforward.
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APPENDIX A: EXAMPLE APPLICATION OF DIFID

1. To demonstrate the application of the instantaneous dump model
DIFID, a l,OOO—yd3 disposal from a split hull barge at a constant-depth dis-
posal site is modeled.

InBut Data

Operations information

2, The total volume of the dredged material is 1,000 yd3 and is con-
tained in a barge 100 ft long and 50 ft wide. The barge is stationary and is
located 1,000 ft from the top of a 15 x 15 grid and 1,500 ft from the left
side of the grid. The grid spacing (Ax) is 200 ft. The unloaded draft of the
barge is taken to be 5,0 ft with the time required to empty the barge taken as
5.0 sec. The total simulation time is arbitrarily taken to be 900 sec for
demonstration purposes. The grid is positioned around the disposal point so
that the collapse phase is contained completely within the grid. The size of
the grid is determined so that suspended material will be contained within the
grid for the desired simulation time. The transport-diffusion time-step is
selected to be 100 sec. This value is selected so that a small cloud does not
travel more than one Ax during the time-step. This will be true since the
clouds are near the bottom and thus are advected by a low velocity,

Dredged material information

3. The dredged material is composed of a sand and a silty clay solid

fraction. The sand volumetric concentration is 0.1395 ft3/ft3 and the silty

3. The remaining 0.69 ft3/ft3
is composed of water. The settling velocity of the sand is taken to be

clay volumetric concentration is 0.1705 ft3/ft

0.07 fps, whereas the silty clay fraction is treated as a cohesive fraction
with the settling velocity computed from Equation 9 (main text). With these
solids concentrations, the average bulk density of the material in the barge
is 1.51 g/cc., Following deposition on the bottom, a void ratio of 4.0 is
specified for the silty clay fraction, whereas a void ratio of 0.8 1is speci-
fied for the sand. Therefore, the overall void ratio of the aggregate is
2.26. An ammonia concentration of 100 mg/% is specified with the ambient

background concentration being 0.0,
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Disposal site information

4, The total water depth is 100 ft and no bottom slope exists. The
ambient water current is 2.0 fps directed from the bottom of the grid toward
the top over the top 40 ft of the water column. The current then reverses
direction over the next 20 ft to become 2,0 fps directed from the top of the
grid toward the bottom at 60 ft below the surface. A linear decrease to a
value of zero at the bottom follows. This profile is illustrated in
Figure Al.
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Figure Al. Ambient water current profile

5. The ambient density profile 1s taken as illustrated in Figure A2.
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Figure A2, Ambient density profile

Coefficients

6. Default coefficients are prescribed for all coefficients except the
bottom friction coefficient, which is taken to be 0.03.

7. The input data file required to model this disposal operation is
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presented in Table Al and is the response to the input requirements presented

in Appendix D.

Model Results

8. A portion of the output from all computational phases from DIFID
for the example problem is presented in Table A2, The output can be grouped
into four categories. The first is an echo of much of the input data, and the
next two are time-histories of the descent and collapse phases. The final
group of output is a time-history of the suspended sediment as well as the
conservative constituent concentrations and bottom deposition on the horizon-
tal grid for each solids fraction. Since the suspended sediment is expected
to be concentrated near the bottom, output has been requested at two vertical
locations, namely, 1 and 2 ft from the bottom. All output is self-explanatory
except for perhaps the computational indicators before both the descent and
collapse phases and information concerning small clouds.

Computational indicators

9. Five trials with a new value being used each time for the integra-
tion step DT are allowed in the descent computations. The value of NTRIAL
gives the trial number. A counter called ISTEP indicates the number of
integration steps within each trial. At the end of each integration step,
various checks are made to determine if the descent phase has been success-
fully computed or if a new trial with a new integration step is required.

If the sum of the depth of the cloud centroid and three-eighths of the cloud
radius is greater than the water depth, the variable labeled IPLUNG is changed
from its default value of O to 1. This signifies that the bottom has been en-
countered. If a neutrally buoyant position is reached in the water column,
the variable labeled NUTRL is changed from its default value of 0 to 1. If
either IPLUNG or NUTRL attains a value of 1 and the value of ISTEP lies
between 100 and 200, the descent phase has been successfully computed. If
these conditions are not met after five trials, the model run terminates.

10. Five trials, with a new integration step DT for each trial, are
also allowed in the collapse computations. Once again, the counter called
ISTEP indicates the number of integration steps during each trial. If the
bottom was not encountered in the descent phase but is then encountered after

collapse in the water column is initiated, the variable labeled IPLUNG is set
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to a value of 2, If TPLUNG = 2 and the number of integration steps lies
between 100 and 200, collapse continues on the bottom. If while the cloud is
collapsing on the bottom, the bed reaction force becomes negative, the cloud
leaves the bottom and IPLUNG is set to 4. 1In addition, the value of ISTEP
when this happens is assigned to the variable ILEAVE, which has a default
value of 999. The variable labeled NUTRL is set to 3 when diffusive spreading
becomes greater than the rate of collapse or if the cloud thickness becomes
less than 1 percent of its initial value. In order for collapse computations
to be successful, NUTRL must have a value of 3 and the number of collapse
integration steps given by (ISTEP - IBED) must lie between 100 and 400. As in
the descent phase, if these conditions are not met after five trials the model
run terminates.

11. Before the presentation of output on the horizontal grid, informa-
tion on the small sediment clouds is given. The time of cloud creation, its
centroid location, the length of a side of a square with equivalent area to
the circular cloud's area, the location of the top of the cloud, its thick-
ness, its total mass, and its entrained mass are presented for each small
cloud. The variables labeled NEWT and LAST give the values of ISTEP when the

current and the previous small clouds were created, with LAST having a default

value of 1.
Discussion

12. As can be seen from the computer printout, the disposal cloud
strikes the bottom in 7.09 sec and grows from an initial radius of 23,44 ft to
a final radius at bottom encounter of 47.5 ft. Collapse on the bottom then
occurs with the collapse phase terminated at 58.44 sec after the disposal with
the final bottom cloud having a diameter of 366,06 ft and a maximum thickness
of 3.18 ft. After 900 sec, 158 ft° of silt remains in the water column with

4,441 ft3 deposited on the bottom, whereas virtually all of the sand is on the
bottom.
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Table Al
Input Data for Example Application of DIFID

Card
No.* Variables Values
1 ID EXAMPLE APPLICATION OF DIFID
2 NMAX 15
MMAX 15
NS 2
3 KEY1 1
KEY2 0
KEY3 1
JBFC 0
4 IPCN 1
IPCL 1
IPLT 0
5 NVERTS 2
6 YPOS(I) 99.0
98.0
7 IDEP 1
DEPC 100.0
DX 200.0
9 XBARGE 1,000.0
ZBARGE 1,500.0
SLOPEX 0.0
SLOPEZ 0.0
XHOLE 0.0
ZHOLE 0.0
DHOLE 0.0
10 NROA 4
11 Y(I) 0.0
40.0
60.0
100.0
(Continued)

* As numbered and described in Appendix D.

(Sheet 1 of 3)
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Table Al (Continued)

Card
No. Variables Values
12 ROA(TI) 1.018
1.018
1.022
1.022
13 IFORM 3
14 DUl 40.0
DU2 60.0
uUl -2.0
uu2 2.0
DW1 40.0
DW2 60.0
WW1 0.0
WW2 0.0
15 TDUMP 0.0
TSTOP 900.0
DTL 100.0
16 VOLM 1,000.0
DREL2 5.0
CU 0.0
CW 0.0
TREL 5.0
17 ROO 1.51
BVOID 2.26
AMLL 0.0
18 BARGL 100.0
BARGW 50.0
19 PARAM SAND
ROAS 2.60
CS 0.1395
VFALL 0.07
VOIDS 0.8
TICOHES 0
19 PARAM SILT-CLAY
ROAS 2.60
Cs 0.1705
VFALL 0.02
VOIDS 4,0
ICOHES 1

(Continued) (Sheet 2 of 3)
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Table Al (Concluded)

Card
No.

20

21

22

23

Values

Variables

PARAM AMMONTA
CINIT 100.0
CBACK 0.0
ALPHAQ 0.235
BETA 0.0
cM 1.0
cDh 0.50
GAMA 0.25
CDRAG 1.0
CFRIC 0.01
CD3 0.10
CDh4 1.0
ALPHAC 0.001
FRICTN 0.03
ALAMDA 0.005
AKYQ 0.05
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APPENDIX B: EXAMPLE APPLICATION OF DIFCD
l. To demonstrate the application of the continuous discharge model

DIFCD, a pipeline disposal operation at a constant-depth disposal site is

modeled.

InEut Data

Operations information

2. The pipeline is 1.0 ft in diameter with a discharge rate of 5.0 fps.
The total simulation time is 2,400 sec with a continuous discharge for the
entire simulation period. These values will depend upon the particular dis-
posal operation. A 15 x 15 grid with a grid spacing (Ax) of 200 ft is
employed. The end of the pipe is located 1,500 ft from the top of the grid
and 800 ft from the left side of the grid. The end of the pipe is located
10 ft below the water surface at an angle of 90 deg with respect to the water
surface, The grid is constructed so that suspended material will remain
within the grid for the desired simulation period. The transport-diffusion
time-step is taken to be 600 sec. This value must be greater than the time
required for the completion of the collapse phase but less than the time
required to transport a cloud one Ax .,

Dredged material information

3. The dredged material possesses an average bulk density of 1.32 g/cc
and is composed of two solid fractions, i.e., sand and silt. The concentra-
tion of each is 0.10 ft3/ft3
be 0.07 fps and that of the silt taken to be 0.02 fps. The aggregate void
ratio is taken to be 1.9 with the void ratio of the silt taken as 3.0 and that

with the settling velocity of the sand taken to

of the sand as 0.8. An ammonia concentration of 100 mg/% exists in the dis-
charged material with the ambient concentration taken to be 0,0.

Disposal site information

4, The disposal site is a constant-depth site of 50 ft. The ambient
water current is directed from the left of the grid toward the right with a
magnitude of 0.5 fps over the upper 45 ft of the water column. The velocity
then linearly decreases to 0.25 fps at 1 ft above the bottom and finally to
zero at the bottom, This profile is illustrated in Figure BIl.
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Figure Bl, Ambient water current profile

The ambient density is assumed to vary linearly from 1.0 g/cc at the surface
to 1,010 g/cc at the bottom.
Coefficients

5. Default values are selected for all coefficients.
6. The input data file required by DIFCD is presented in Table Bl and

is the response to the input requirements presented in Appendix E.

Model Results

7. Output from DIFCD for the example problem, which consists of output
from all computational phases (Table B2), is discussed in the following para-
graphs, The output can be grouped into four categories. The first is an echo
of much of the input data, with the next two being time-~histories of the
descent and collapse phases. The final group of output is a time-history of
the suspended sediment as well as the conservative constituent concentrations
and bottom deposition on the horizontal grid for each solids fraction. Since
the suspended sediment is expected to be concentrated near the bottom, output
has been requested at 1,0 ft from the bottom, All output is self-explanatory
except for perhaps the computational indicators before both the descent and
collapse phases and information concerning small clouds.

Computational indicators

8. Five trials, with a new value each trial for the integration
step DS, are allowed in the descent computations. NTRIAL gives the value of
the last trial. The counter ISTEP indicates the number of integration steps.
At the end of each integration step, various checks are made to determine if
the jet convection phase has been successfully computed or if a new trial with
a new integration step is required. The current trial is reconsidered if a

neutrally buoyant position is computed which results in NUTRL being changed
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from its default value of 0 o 1, if the bottom has been encountered, or if
ISTEP > 600. Bottom encounter occurs if any of the following three expres-

sions are satisfied, which results in IPLUNG = 1.

CY(ISTEP) + 0.85 * BC(ISTEP) SIN 02 > H (B1)
CY(ISTEP) + DS x COS 02 > H (B2)
CY(ISTEP) + 0.75 * BC(ISTEP) > H IF 02 < 30 deg (B3)
where
CY = vertical position of jet center line
ISTEP = number of integration steps
BC = jet radius

02 = angle between vertical and jet center line
H = water depth
DS

spatial integration step
Jet convection computations are considered complete if either NUTRL = 1 or
IPLUNG = 1 and NTRIAL < 5 and the number of integration steps ISTEP lies
between 100 and 200. If a new trial is required, the jet computations are
reinitiated but with the integration step set to be the old step multiplied by
(DINCR * ISTEP/140) where DINCR can be input by the user. If after five
trials a successful completion has not been realized, the program terminates.
9. Five trials with a new integration step each trial are also allowed
in the collapse computations. At the end of each integration step, various
checks are made to determine if the integration step counter ISTEP is to be
incremented with the computations proceeding or if NTRIAL should be incre-
mented with the computations starting over from the end of the jet convection.
If diffusive spreading is greater than dynamic spreading, the variable labeled
NUTRL takes on a value of 3. If the number of collapse integration steps lies
between 100 and 400 and NUTRL = 3, collapse computations have been success-—
fully completed. However if NUTRL = 3 and ISTEP > 599, a new trial is
attempted. If NTRIAL > 5, the program terminates. As previously noted, if
the bottom is encountered during the jet convection phase, the variable

labeled IPLUNG is set to 1. However, if the jet convection phase terminates
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in the water column and then the bottom is encountered during the collapse
phase, IPLUNG is set to 2.

10. Before the presentation of output on the horizontal grid, informa-
tion on the small sediment clouds is given. The time of cloud creation, its
centroid location, the length of a side of a square with equivalent area to
the circular cloud's area, the location of the top of the cloud, its thick-
ness, its total mass, and its entrained mass are presented for each cloud.
The variables labeled NEWT and LAST give the values of ISTEP when the current
and the previous small clouds were created, with LAST having a default value
of 1,

Discussion

11, As indicated in the computer printout, the momentum jet strikes the
bottom after 10.29 sec with a radius of 4.496 ft. Collapse on the bottom
terminates after 29.66 sec. After 2,400 sec, 97 percent of the sand and silt
is deposited on the bottom, and the maximum ammonia concentration at 1.0 ft

above the bottom is 0.30 mg/g .
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Table Bl
Input Data for Example Application of DIFCD

Card
No.* Variables ‘ Values

1 ID EXAMPLE APPLICATION OF DIFCD

2 NMAX 15
MMAX 15
NS 2

3 KEY1 0
KEY2 1
KEY3 1

4 IPCN 1
IPCL 1
IPLT 0

5 NVERTS 1

6 YPOS(I) 49.0

7 IDEP 1
DEPC 50.0
DX 200.0

9 TSJ 0.0
TSTOP 2,400.0
DTL 600.0
TJET 2,400.0

10 VDOT 5.0
BC 0.5
DJET 10.0
ANGLE 90.0
ROI 1.32
BVOID 1.9

11 XBARGE 1,500.0
ZBARGE 800.0
SAI 0.0
UB 0.0

12 PARAM SAND
ROAS 2.60
CS 0.10

(Continued)

* As numbered and described in Appendix E.
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Table Bl (Concluded)

Card
No.

12 (Continued)

12

13

17

18

19

20

21

Variables

VFALL
VOIDS
ICOHES

PARAM
ROAS
CS
VFALL
VOIDS
ICOHES

PARAM
CINIT
CBACK

NPROF
NROA
DTROA

YROA(T)

RHOA(T)

IFORM

DUl
DU2
uul
uu2
DW1
DW2
WWl
WW2

Values

w

S o
QOWULOOoOWwWn
*« ® * e ®» » .
NUMOOOOOO
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APPENDIX C: EXAMPLE APPLICATION OF DIFHD
1, To illustrate the application of DIFHD, a disposal operation from a
stationary hopper dredge containing eight bins with pairs of bins opened
sequentially is modeled.

Input Data

Operations information

2. A plan and side view of the hopper bins are illustrated in Fig-
ure Cl, Disposal is assumed to occur from pairs of bins with the disposal
from one pair essentially complete before disposal from the next pair begins.
The total discharge takes 120 sec and occurs through bin doors with a cross-
sectional area of 16 ft2 which yields an equivalent circular geometry with a
radius of 2.26 ft. The center-line distance between the bins is 14 ft, The
discharge rate from each bin is taken to be 75 cfs. A total simulation period
of 600 sec with a time~step of 300 sec is prescribed. The simulation period
is arbitrary but should be small enough so that suspended material remains in
the grid. The time-step is selected so that a small cloud does not travel
more than one grid space Ax during the time-step.

3. A 15 x 15 grid with a Ax of 200 ft is employed. The location of
the hopper dredge is 1,500 ft from the top of the grid and 1,500 ft from the
left side of the grid. The loaded draft is 10.0 ft.

Dredged material information

4, The dredged material has an average bulk density of 1.32 g/cc and is
composed of sand and clay solid fractions, each having a concentration of
0.10 ft3/ft3. The settling velocity of the sand is taken to be 0,07 fps while
the clay is considered cohesive with the settling velocity computed internally
using Equation 9 (main text). The aggregate void ratio is taken to be 2.26
with a value of 4.0 assumed for the clay and 0.8 for the sand. An ammonia
concentration of 100 mg/% exists in the bins with the ambient concentration
taken to be zero.

Disposal site information

5. The disposal site is taken as a constant-depth site with a water
depth of 75 ft and no bottom slope. The ambient current is 2.0 fps over the
upper 70 ft of the water column and is directed from the left side of the grid

Cl
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Figure C2. Ambient current velocity profile

to the right. The velocity then decreases linearly over the next 4 ft to
0.4 fps. This profile is illustrated in Figure C2, The ambient density is
1.00 g/cc at the surface and increases linearly to 1.0l g/cc at the bottom,
Coefficients

6. Default values are specified for all coefficients except the bottom
friction, which is taken as 0.03.

7. The input data file required by DIFHD is presented in Table Cl and

is the response to the input requirements presented in Appendix F.

Model Results

8. Output from DIFHD (Table C2) for the example problem is discussed in
the following paragraphs. The output can be grouped into four categories.
The first is an echo of much of the input data with the next two being time-
histories of the descent and collapse phases. The final group of output is a
time-history of the suspended sediment as well as the conservative constituent
concentrations and bottom deposition on the horizontal grid for each solids
fraction as well as the conservative constituent. All output is self-
explanatory except for perhaps the computational indicators before both the
descent and collapse phases and information concerning small clouds.

Computational indicators

9. Five trials, with a new value each trial for the integration step
DS, are allowed in the descent computations. NTRIAL gives the value of the
last trial. The counter ISTEP indicates the number of integration steps. At

the end of each integration step, various checks are made to determine if the
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jet convection phase has been successfully computed or if a new trial with a
new integration step is required. The current trial is reconsidered if a
neutrally buoyant position is computed which results in NUTRL = 1, if the bot-
tom has been encountered, or if ISTEP > 600. Bottom encounter occurs if any

of the three expressions below are satisfied, which results in IPLUNG = 1,

CY(ISTEP) + 0.85 * BC(ISTEP) SIN 62 > H (c1)
CY(ISTEP) + DS x COS 02 > H (C2)
CY(ISTEP) + 0,75 * BC(ISTEP) >H IF 02 < 30 deg (C3)

where

CY = vertical position of jet center line

ISTEP = number of integration steps

BC = jet radius

6? = angle between vertical and jet center line

H = water depth

D5 = spatial integration step
Jet convection computations are considered complete if either NUTRL = 1 or
IPLUNG = 1 and NTRIAL < 5 and the number of integration steps ISTEP lies
between 100 and 200. If a new trial is required, the jet computations are
reinitiated but with the integration step set to be the old step multiplied by
(DINCR * ISTEP/140) where DINCR can be input by the user. If after five
trials a successful completion has not been realized, the program terminates.

10. Five trials with a new integration step DT for each trial are also

allowed in the collapse computations. Once again the counter called ISTEP
indicates the number of integration steps during each trial. A basic assump-
tion in the use of DIFHD is that the bottom is encountered during the jet con-
vection phase. Thus, if IPLUNG # 1 when the collapse computations are
initiated, the program terminates. While the cloud is collapsing on the bot-
tom, if the bed reaction force becomes negative, the cloud leaves the bottom
and IPLUNG = 4. In addition, the value of ISTEP when this happens is assigned
to the variable ILEAVE, which has a default value of 999, If the discharge
has been completed when an estimated diffusive spreading exceeds the rate of

collapse, the variable labeled NUTRL is assigned a value of 3. For collapse
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computations to be successful, NUTRL must have a value of 3 and the number of
collapse integration steps given by (ISTEP - IBED) must be between 100 and
400, If these conditions are not met after five trials, the model run
terminates.

11, Before the presentation of output on the horizontal grid, informa-
tion on the small sediment clouds is given, The time of cloud creation, its
centroid location, the length of a side of a square with equivalent area to
the circular cloud's area, the location of the top of the cloud, its thick-
ness, its total mass, and its entrained mass are presented for each cloud.
The variables labeled NEWT and LAST give the values of ISTEP when the current
and the previous small clouds were created, with LAST having a default value
of 1,

Discussion

12. As can be seen from the computer printout, the jet of material from
a bin reaches the bottom after 14.61 sec and has a radius of 17.04 ft. The
resulting bottom collapse continues as long as the bottom cloud is fed by the
continuous discharge of material from the remaining bins. After 600 sec, all
of the solid material has been deposited on the bottom and the ammonia con-
centration has been diluted to a maximum of 0.51 mg/% at 1.0 £t above the
bottom.
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Table Cl
Input Data for Example Application of DIFHD

Card
No,* Variables Values

1 ID EXAMPLE APPLICATION OF DIFHD

2 NMAX 15
MMAX 15
NS 2

3 KEY1 1
KEY2 0
KEY3 1

4 IPCN 1
IPCL 1
IPLT 0

5 NVERTS 1

6 YPOS(I) 74.0

7 IDEP 1
DEPC 75.0
DX 200.0

9 TDUMP 0.0
TSTOP 600.0
DTL 300.0
TDIS 120.0

10 VDOT 75.0
BC 2,26
DJET 10.0
ROI 1.32
BVOID 2.26

11 NBINS 2
DBINS 7.0

12 XBARGE 1,500.0
ZBARGE 1,500.0
SLOPEX 0.0

(Continued)

* As numbered and described in Appendix F.
(Sheet 1 of 3)
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Table Cl1 (Continued)

Card
No. Variables Values

12 (Continued) SLOPEZ 0.0
XHOLE 0.0
0.0
0.0

ZHOLE
DHOLE

13 PARAM SAND
ROAS 2.6
cs 0.1
VFALL 0.0
VOIDS 0.8
ICOHES 0

13 PARAM CLAY
ROAS 2.6
Cs 0.1
VFALL 0.0
VOIDS 4.0
ICOHES 1

14 PARAM AMMONTA
CINIT 100.0
CBACK 0.0

15 ALPHA1 0
ALPHA2 0
BETA 0.
CD 1.
GAMA 0
CDRAG 1

16 CFRIC 0
CD3 0
CD4 1
ALPHAC 0
FRICTN 0
M 1

17 ALAMDA 0.005
ARYQ 0.05

18 NROA 2

19 Y(I) 0.0
5.0
(Continued)
(Sheet 2 of 3)
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Table Cl (Concluded)

Card
No. Variables Values
20 ROA(T) 1.0
1.01
21 IFORM 3
22 DUl 70.0
DU2 74.0
Uul1 0.0
uu2 0.0
DW1 70.0
DW2 74.0
WWl 2.0
WW2 0.4

(Sheet 3 of 3)
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APPENDIX D: INPUT DATA FORMAT FOR DIFID

ID (10A8)

ID = Descriptive title of run.

NMAX, MMAX, NS (315)

NMAX = Number of grid points in the z-direction (left to right).

(Max = 20).

MMAX = Number of grid points in the x-direction (top to bottom).
(Max = 20).

NS = Number of solid fractions. (Max = 3).

KEY1, KEY2, KEY3, JBFC (415)

KEYl = 1 if user will input model coefficients, otherwise input 0.

KEY2 = 1 if computations are terminated after convective descent, other-
wise input 0.

= 2 if computations are terminated after dynamic collapse, otherwise
input 0.

KEY3 = 1 if transport-diffusion computations for a conservative tracer are
made, otherwise input O,

JBFC = 1 if liquid limit is known, otherwise input 0.

IPCN, IPCL, IPLT (315)

IPCN = 1 if results from convective descent are to be printed, otherwise
input O,

IPCL = 1 if results from the collapse phase are to be printed, otherwise
input 0.

IPLT = 0 if results from transport-diffusion computations are to be
furnished at one-fourth, one-half, three-fourths, and end of total
simulation time.

= N if user will input N times at which transport-diffusion results
are to be furnished. (Max = 12).
NVERTS (15)

NVERTS = Number of vertical positions where output from the transport-

diffusion computations is desired. (Max = 4).
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6.

10'

(YPOS(1I), I = 1, NVERTS) (4F10.0)
YPOS(I) = Depth below the water surface in feet where output from the

transport-diffusion computations will be provided. Will
normally be in lower half of the water column,

IDEP, DEPC, DX (15,5X,2F10.0)

IDEP

1 if the water depth is constant, otherwise input O,

DEPC = Constant water depth in feet., Enter 0.0 if IDEP = 0.
DX = Spatial step of the grid in feet. Typical values will be between
100 and 300 ft,
(If IDEP = 1, skip Card 8)
(DEPTH(N,M), N = 1, NMAX) (16F5.0)

DEPTH(N,M) = Water depths at grid points in feet. Enter from left to
right and from top to bottom.

XBARGE, ZBARGE, SLOPEX, SLOPEZ, XHOLE, ZHOLE, DHOLE (7F10.0)

XBARGE = x-location of disposal on the grid in feet.

ZBARGE :

z-location of disposal on the grid in feet.

SLOPEX :

Slope of bottom at the disposal point in x-direction in
degrees, A positive value results in movement of the cloud
centroid toward the bottom of the grid.

SLOPEZ = Slope of bottom at the disposal point in z-direction in
degrees. A positive value results in movement of the cloud
centroid toward the right side of the grid.

XHOLE = x-dimension of bottom hole in feet. Leave blank if there is no
hole.

ZHOLE = z-dimension of bottom hole in feet. Leave blank if there is no
hole,

DHOLE := Depth of bottom hole in feet. Leave blank if there is no hole.

NROA (15)

NROA = Number of points in ambient density profile. (Max = 5).
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11.

12,

13.

14,

15.

(Y(I), I = 1, NROA) (5F10.0)

Y(I) = Depth below the water surface in feet of density input.

(ROA(I), I = 1, NROA) (5F10.0)

ROA(I) = Ambient density in grams per cubic centimetres.

IFORM (15)

TFORM

[}
Lo

if a constant-depth velocity profile will be input.

= 2 if a depth-averaged velocity profile, with a log distribution
computed internally, will be input.

= 1 if a depth-averaged velocity profile with no vertical varia-
tion will be input,

(If IFORM # 3, skip Card 14)

pui, buv2, UUl1l, UU2, DWl, DW2, WWl, WW2 (8F10.0)

DUl, DU2, UUl, UU2 = Describes upper and lower U-component of constant-
depth velocity profile (Figure 4). X-direction.

DW1, DW2, WWl, WW2 = Describes upper and lower W-component of constant-
depth velocity profile (Figure 4). Z-direction.

If IFORM = 1 or 2, an Unformatted Velocity File (TAPE7)
must be created as follows:

TUW

TUW = Time in seconds relative to a 90,000-sec tidal cycle when the fol-
lowing velocity data occur. Starting point on the tide for entry
of data is arbitrary.

((U(N,M,), N =1, NMAX), M = 1, MMAX), ((W(N,M), N 1, NMAX), M =1,

MMAX)
U(N,M) = Vertically averaged velocity component in x-direction in
feet per second.
W(N,M) = Vertically averaged velocity component in z-direction in
feet per second.
TDUMP, TSTOP, DTL (3F10.0)

TDUMP = Time in seconds after beginning of tidal cycle when disposal is
made.
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16.

17.

18.

19.

TSTOP

DTL = Transport-diffusion time-step in seconds. Should select a value
such that a small cloud will not travel more than one Ax during
the time-step.

VOLM, DREL2, CU, CW, TREL (5F10.0)

VOLM = Total volume of dredged material in cubic yards.

DREL2 = Unloaded draft of disposal vessel in feet.

cu = Vessel speed in x-direction in feet per second.

CwW = Vessel speed in z-direction in feet per second.

TREL = Time required to empty the scow in seconds.

ROO, BVOID, AMLL (3F10.0)

RO0O = Bulk density of disposed material in grams per cubic centimetre.

BVOID = Void ratio of the disposed material after deposited on the
bottom,

AMLL = Soil moisture content in multiple of liquid limit. Can leave
blank if not known and JBFC is set to equal O.

BARGL, BARGW (2F10.0)

BARGL = Vessel length in feet,

BARGW = Vessel width in feet,

PARAM, ROAS, CS, VFALL, VOIDS, ICOHES (A8,2X,4F10.0,15)

PARAM = Description of solid fraction.

ROAS = Specific gravity of this type solid particle.

cs = Ratio of volume of this solid fraction to the total volume
of the disposal.

VFALL = Settling velocity in feet per second of this type solid
particle.

VOIDS = Void ratio for this solid fraction after deposit on the bottom.

Number of seconds simulation continues. Will normally be less
than 3,600 sec.
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20.

21.

22,

23.

ICOHES = 1 1if this solid fraction is cohesive, otherwise input 0.

(Repeat Card 19 for each solid fraction)
(If KEY3 = 0, skip Card 20)

PARAM, CINIT, CBACK (A8,2X,2F10.0)
PARAM = Description of conservative constituent.
CINIT = Initial concentration of conservative constituent in the

disposal in wmilligrams per litre.
CBACK = Background concentration of conservative constituent in the

ambient water in milligrams per litre.

(If KEYl # 1, skip Cards 21-23)

ALPHA@, BETA, CM, CD (4F10.0)
ALPHAQ = Entrainment coefficient for a turbulent thermal.

Default = 0,235,
BETA = Settling coefficient. Default = 0,
CcM = Apparent mass coefficient. Default = 1.0.
CD = Drag coefficient for a sphere. Default = 0.50.
GAMA, CDRAG, CFRIC, CD3, CD4, ALPHAC, FRICTN (7F10.0)
GAMA = Ratio of density gradient in the cloud to the ambient density

gradient. Default = 0,25,
CDRAG = Form drag coefficient for the collapsing cloud. Default = 1.0.
CFRIC = Skin friction coefficient for the collapsing cloud.
Default = 0.01.

CD3 = Drag coefficient for an ellipsoidal wedge. Default = 0.10.
CD4 = Drag coefficient for a plate, Default value is 1.0.
ALPHAC = Entrainment coefficient in collapse. Default = 0.001.
FRICTN = Friction coefficient between cloud and bottom. Default = 0.01.
ALAMDA, AKY® (2F10.0)

ALAMDA = Dissipation parameter used in four-thirds law for horizontal
diffusion. Default = 0.005 for an estuarine environment.
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AKY® = Vertical diffusion coefficient for unstratified water column.
Default = 0.05 for an estuarine environment.

(If IPLT = 0, skip Card 24)
24, (TPRT(I), I =1, IPLT) (8F10.0)
TPRT(X) = Time in seconds when output from the transport-diffusion

computations will be furnished. Maximum number of times is 12.
Use two lines i1f IPLT is greater than 8.
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APPENDIX E: INPUT DATA FORMAT FOR DIFCD

ID (10A8)

ID = Descriptive title of run,

NMAX, MMAX, NS (315)

NMAX = Number of grid points in the z-direction (left to right).

(Max = 20).

MMAX = Number of grid points in the x-direction (top to bottom).
(Max = 20).

NS = Number of solid fractions. (Max = 3).

KEYl, KEY2, KEY3 (315)

KEY1 = 1 if user will input model coefficients, otherwise input O.

KEY2 = 1 if the discharge is stationary, otherwise input 0.

= 2 if computations are terminated after collapse.

KEY3 = 1 if computations for a conservative tracer are made, otherwise
input O.

IPCN, IPCL, IPLT (315)

IPCN = 1 if results from the convective descent phase are to be printed,
otherwise input O.

IPCL = 1 if results from the collapse phase are to be printed, otherwise
input O,

IPLT = 0 if results from transport-diffusion computations are to be
furnished at one-fourth, one-half, three-fourths, and end of total
simulation time.

= N where N 1s the number of times output is requested from the
transport-diffusion computations.

NVERTS (15)

NVERTS = Number of vertical positions where output from the transport-
diffusion computations is desired. (Max = 4).
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10,

(YPOS(I), I = 1, NVERTS) (4F10.0)
YPOS(1) = Depth in feet below the water surface where output from the

transport computations will be provided. Will normally be in
lower half of the water column,

IDEP, DEPC, DX (15,5X,2F10.0)

IDEP

4

1 1f the water depth is constant, otherwise input 0.

DEPC = Constant water depth in feet. Enter 0.0 if IDEP = 0.
DX = Spatial step of the grid in feet. Typical values will be between
100 and 300 ft.
(If IDEP = 1, skip Card 8)
(DEPTH(N,M), N = 1, NMAX) (16F5.0)

DEPTH(N,M) = Water depth at grid points in feet. Enter from left to
right on the grid and from top to bottom.

TSJ, TSTOP, DTL, TJET (4F10.0)

TSJ = Time in seconds after the beginning of tidal cycle when disposal
is initiated.

TSTOP = Number of seconds simulation will continue. Normally less than
3,600 sec after disposal stops.

DTL = Transport-diffusion time-step in seconds. Must be greater than
time to end of collapse phase but small enough so that a small
cloud does not travel more than one Ax during the time-step.
Make a preliminary run with KEY2 = 2 and KEY3 = 0 to determine
the collapse time.

TJET = Number of seconds the disposal continues,

vDOT, BC, DJET, ANGLE, ROI, BVOID (6F10.0)

VDOT = Volume rate of discharge in cubic feet per second.

BC = Initial jet radius in feet.

DJET = Depth of discharge source below the water surface in feet.

ANGLE = Angle of discharge source in degrees relative to horizontal.

ROI = Bulk density of disposed material in grams per cubic centimetre.
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11,

12.

13.

14,

BVOID = Void ratio of the disposed material after deposited on the

bottom.
XBARGE, ZBARGE, SAI, UB (4F10.0)
XBARGE = x-location of disposal on the grid in feet.
ZBARGE = z-location of disposal on the grid in feet,
SAT = Vessel course measured counterclockwise from positive x-axis.
Positive x-axis is top to bottom.
UB = Vessel speed in feet per second.
PARAM, ROAS, CS, VFALL, VOIDS, ICOHES (A8,2X,4F10.0,15)
PARAM = Description of solid fraction.
ROAS = Specific gravity of this type solid fraction.
CS = Ratio of volume of this solid fraction to the total volume of
the disposal.
VFALL = Settling velocity in feet per second of this type solid
particle.
VOIDS = Void ratio for this solid fraction after deposit on the bottom.
ICOHES = 1 1if this solid fraction is cohesive, otherwise input 0.
(Repeat Card 12 for each solid fraction)
(If KEY3 = 0, skip Card 13)
PARAM, CINIT, CBACK (3F10.0)
PARAM = Description of conservative constituent.
CINIT = Initial concentration of tracer in milligrams per litre.
CBACK = Background concentration of conservative constituent in the
ambient water in milligrams per litre.
(If KEY1l #1, skip Cards 14-16)
ALPHAl, ALPHA2, BETA, CD, CM (5F10.0)
ALPHALl = Entrainment coefficient for a jet. Default = 0.0806.
ALPHAZ = Entrainment coefficient for a thermal. Default = 0.3536.
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15,

16.

17.

18.

BETA

Settling coefficient. Default = 0.0,

cD = Drag coefficient for a cylinder. Default = 1.3,

M = Apparent mass coefficient. Default = 1.0,

GAMA, CDRAG, CFRIC, CD3, CD4, ALPHA3, ALPHA4, FRICTN (8F10.0)

GAMA = Ratio of plume density gradient to the ambient density
gradient, Default = 0.25,

CDRAG = Form drag coefficient of a collapsing elliptical cylinder.
Default = 1,0,

CFRIC = Skin drag coefficient of a collapsing elliptical cylinder.
Default = 0.01.

CD3 = Drag coefficient for an ellipsoidal wedge. Default = 0,20.

CD4 = Drag coefficient for a 2-D plate. Default value = 2,0,

ALPHA3 = Entrainment coefficient due to convection in the collapse
phase., Default = 0,3536,

ALPHA4 = Entrainment coefficient due to collapse of the element.
Default = 0,001,

FRICTN = Friction coefficient between cloud and bottom. Default = 0.01.

ALAMDA, AKY{ (2F10.0)

ALAMDA = Dissipation factor used in four-thirds law for horizontal
diffusion. Default = 0,005 in an estuarine environment.

AKYp) = Vertical diffusion coefficient for unstratified water column.
Default = 0.05 in an estuarine environment,

NPROF, NROA, DTROA (215,F10.0)

NPROF = Number of density profiles (Max = 5).

NROA := Number of points in ambient density profile. (Max = 5).

DTROA = Time in seconds between profiles. Input total simulation time
(TSTOP) if NPROF = 1.

(YROA(I), I = 1, NROA) (5F10.0)
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19.

20.

21,

22.

YROA(I)

(RHOA(I),

RHOA(T)

IFORM

IFORM

DUl, DU2,

buUl, DU2,

DW1, DW2,

Depth below the water surface in feet where density values are
input.

I =1, NROA) (5F10.0)

Ambient density in grams per cubic centimetre.

(15)
if a constant-depth velocity profile will be input,
if a depth-averaged velocity profile, with a log distribution
computed internally, will be input.
if a depth-averaged velocity profile with no vertical varia-
tion will be input.

(If IFORM # 3, skip Card 21)

UUl, UU2, DW1, DW2, WWl, WW2 (8F10.0)
UUl, UU2 = Describes the U-velocity profile. (Figure 4).
WWl, WW2 = Describes the W-velocity profile (Figure 4).

If IFORM = 1 or 2, an Unformatted Velocity File (TAPE7)

TUW

must be created as follows:

TUW = Time in seconds relative to a 90,000-sec tidal cycle when the fol-
lowing velocity data occur. Starting point on the tide for entry
of data is arbitrary.

((U(N’M)’ N =1, NMAX), M = 1, MMAX), ((W(NsM)’ N=1, N\MAX), M = 1,

MMAX)
U(N,M) = Vertically averaged velocity component in x-direction in
feet per second.
W(N,M) = Vertically averaged velocity component in z-direction in
feet per second.
(If IPLT = 0 , skip Card 22)
(TPRT(I), I = 1, IPLT) (8F10,0)

TPRT(I) = Time in seconds when output from the transport-diffusion

computations will be furnished. Maximum number of times is 12,
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APPENDIX F: INPUT DATA FORMAT FOR DIFHD

1D (10A8)

ID = Descriptive title of runm.

NMAX, MMAX, NS (315)

NMAX = Number of grid points in the z-direction (left to right).
(Max = 20).

MMAX = Number of grid points in the x-direction (top to bottom).
(Max = 20).

NS = Number of solid fractions. (Max = 3).

KEY1, KEY2, KEY3 (315)

KEYl = 1 if coefficients required in the computations will be input by
user, otherwise input 0

KEY2 = 1 if computations are terminated after convective descent, other-

wise input 0.
= 2 if computations are terminated after dynamic collapse, otherwise
input 0.

KEY3 = 1 if transport-diffusion computations for a conservative tracer
are made, otherwise input 0.

IPCN, IPCL, IPLT (315)

IPCN = 1 if results from the convective descent are to be printed, other-
wise input O.

IPCL = 1 if results from the collapse phase are to be printed, otherwise
input 0.

IPLT = 0 if results from the transport-diffusion phase are to be printed
at one~fourth, one-~half, three-fourths, and end of total
simulation time.

= N if user will input N times at which transport-diffusion results
are to be furnished. (Max = 12).
NVERTS (15)

NVERTS = Number of vertical positions where concentration output from
the transport-diffusion computations i1s desired. (Max = 4).
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10.

(YPOS(X), I = 1, NVERTS) (4F10.0)

YPOS(I) = Depth in feet below the water surface where output from the
transport-diffusion computations will be provided. Will
normally be in lower half of the water column.

IDEP, DEPC, DX (15,5X, 2F10.0)
IDEP = 1 if the water depth is comstant, otherwise input 0.
DEPC = Constant water depth in feet. Enter 0.0 if IDEP = 0.
DX = Space step of the grid in feet. Typical values will be between
100 and 300 ft.
(If IDEP = 1, skip Card 8)
((DEPTH(N,M), N = 1, NMAX), M = 1, MAX) (16F5.0)

DEPTH(N,M) = Water depths at grid points in feet. Enter from left to
right and from top to bottom.

TDUMP, TSTOP, DTL, TDIS (4F10,0)

TDUMP

Time in seconds of the initiation of the disposal with respect to
the beginning of the tidal cycle.

TSTOP

Duration of the simulation in seconds. Will normally be less
than 3,600 sec.

DTL = Time-step for transport-diffusion computations. Must be greater
than time to end of collapse, Make a preliminary run with
KEY2 = 2 and KEY3 = 0.

TDIS

Time in seconds required to complete the discharge operation.

vDOT, BC, DJET, ROI, BVOID (5F10.0)

VDOT = Discharge flow rate in cubic feet per second.

BC = Radius of discharge opening in feet,

DJET = Loaded draft of the vessel in feet.

ROI = Bulk density of discharged material in grams per cubic
centimetre,

BVOID = Void ratio of the disposed material after deposited on the

bottom,
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11.

12.

13.

NBINS, DBINS (15, 5%, F10.0)

NBINS

Number of bins opened simultaneously. Only one jet is computed
in the convective descent phase; however, if NBINS > 1, the
effect is included in the bottom collapse phase.

DBINS = Representative distance which increases the initial radius of
the bottom collapsing cloud to account for NBINS jets forming the
cloud, e.g., set equal to one-half the distance between bins in
feet,

XBARGE, ZBARGE, SLOPEX, SLOPEZ, XHOLE, ZHOLE, DHOLE (7F10.0)

XBARGE = x~-location of disposal vessel in feet.

ZBARGE = z-location of disposal vessel in feet,

SLOPEX = Slope of the bottom at the disposal point in x-direction in
degrees, A positive value results in movement of the cloud
centroid toward the bottom of the grid.

SLOPEZ = Slope of bottom at the disposal point in z-direction in degrees.
A positive value results in movement of the cloud centroid
toward the right side of the grid.

XHOLE = x-dimension of bottom hole in feet. Leave blank if there is no
hole.

ZHOLE = z-dimension of bottom hole in feet. Leave blank if there is no
hole.

DHOLE = Depth of bottom hole in feet. Leave blank if there is no hole.

PARAM, ROAS, CS, VFALL, VOIDS, ICOHES (A8, 2X, 4F10.0, I5)

PARAM = Description of solid fraction.

ROAS = Specific gravity of this type solid particle.

CS = Ratio of volume of this solid fraction to the total volume
of disposed material,

VFALL = Settling velocity in feet per second of this type solid
particle.

VOIDS = Void ratio for this solid fraction after deposit on the

bottom.

ICOHES = 1 if this solid fraction is cohesive, otherwise input 0.
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14,

15.

16.

(Repeat Card 13 for each solid fraction)

(If KEY3 = 0, skip Card 14)

PARAM, CINIT, CBACK (A8, 2X, 2F10.0)
PARAM = Description of conservative constituent.
CINIT = Initial concentration of conservative constituent in the hopper
in milligrams per litre.
CBACK = Background concentration of conservative constituent in the
ambient water in milligrams per litre.
(If KEY1l = 0, skip Cards 15-17)
ALPHA®, ALPHAl, ALPHA2, BETA, CD, GAMA, CDRAG (6F10.0)
ALPHAP = Entrainment coefficient for a turbulent thermal. Default =
0.235.
ALPHAl = Entrainment coefficient for jet. Default = 0.806,
ALPHA2 = Entrainment coefficient for 2-D thermal, Default = 0.3536.
BETA = Settling coefficient, Default = 0.0.
CcD = Drag coefficient for a cylinder. Default = 1.3.
GAMA = Ratio of plume density gradient to ambient density gradient.
Default = 0.25,
CDRAG = Form drag coefficient of the collapsing cloud.
Default = 1.0.
CFRIC, CD3, CD4, ALPHAC, FRICTN, CM (6F10.0)
CFRIC = Skin friction coefficient for the collapsing cloud.

Default = 0.01.
CD3 = Drag coefficient for an ellipsoidal wedge. Default = 0.10.
CD4 = Drag coefficient for a plate. Default = 1,0,
ALPHAC = Entrainment coefficient in collapse, Default = 0,001.

FRICIN

Friction coefficient between cloud and bottom, Default = 0,01.

CcM = Apparent mass coefficient. Default = 1.0.
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17.

18.

19’

20,

21.

22.

ALAMDA, AKY® (2F10.0)

ALAMDA = Dissipation parameter in four-thirds horizontal diffusion law.
Default = 0,005 in an estuarine environment.

AKY( = Maximum value of vertical diffusion coefficient for unstratified
water column. Default = 0.05 for an estuarine environment,

NROA (15)
NROA = Number of vertical points in ambient density profile.

(Max = 5).
(Y(I), I =1, NROA) (5F10.0)

Y(I) = Depth below the water surface in feet of density input.

(ROA(I), I =1, NROA) (5F10.0)

ROA(I) = Ambient density in grams per cubic centimetre.

IFORM (15)

IFORM = 3 if constant-depth velocity profiles will be input.
2 if a depth~averaged velocity profile, with a log distribution
computed internally, will be input.
1 if a depth-averaged velocity profile with no vertical varia-
tion will be input.

(If IFORM # 3, skip Card 22)

puvi, bu2, UUl, UU2, DWl, DW2, WWl, WW2 (8F10.0)

DUl, DU2, UUl, UU2 = Describes upper and lower U-components of constant-
depth velocity profile (Figure 4). X-direction.

DW1, DW2, WWl, WW2 = Describes upper and lower W-components of constant-
depth velocity profile (Figure 4). Z-direction.

If IFORM = 1 or 2, an Unformatted Velocity File (TAPE7)
must be created as follows:

Tow

TUW = Time in seconds-relative to a 90,000-sec tidal cycle when the
following velocity data occur. Starting point on the tide for
entry of data is arbitrary.
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23.

((U(N,M), N =1, NMAX), M = 1, MMAX), ((W(N,M), N =1, NMAX), M =1,
MMAX)

U(N,M) = Vertically averaged velocity component in x-direction in feet
per second.

W(N,M) = Vertically averaged velocity component in z~direction in feet
per second.

(If IPLT = O, skip Card 23)

(TPRT(I), I = 1, IPLT) (8F10.0)
TPRT (I) = Time in seconds when output from the transport-diffusion

computations will be furnished. Maximum number of times is
12.
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